the improbable yet elementary case

a mathematical paradigmatic mashup: Thomas Kuhn Vs map-territory Vs ...?

prefer the simplest explanation ¹

consider all mathematics as pseudo-mathematics; a means for a novice mathematician to express ideas in less time and fewer words than a similarly novice writer might, in prose. all terms are tentative. corrections $\land \lor$ advice, welcome.

. . .

¹which works

1 map territory delta, fit

($MT\Delta$, MTf) delta refers to difference, or required change

 $a \ map \ is \ a \ representational \ account \ of \ territory; \ however, \ not \ all \ maps \ resolve \ territory \ to \ representational \\ account \ equally \ well$

$$M \mapsto T$$
, $M \not\equiv T$, $M \not\approx T$

Specifically, where two paradigms Pa, attempt to resolve r() approximately the same phenomenal scope Sp_1 , two paradigms $Pa_{1,2}$, may interpret and represent differently:

$$Pa_1(Sp_1) \rightarrow Pa_1$$
, $Pa_2(Sp_1) \rightarrow Pa_2$
 $Pa_1 \not\approx Pa_2$
 $|Pa_1| \not\approx |Pa_2|$
 $Pa_1 \cap Pa_2 \approx \varnothing$
 $Pa_1 \neq Pa_2$

1.1 map territory delta

 $(MT\Delta)$

the difference between map and respective territory

$$M_T \setminus M = M^{\mathcal{AC}}$$

1.2 map territory fit

(MTf)