the improbable yet elementary case

@causalmechanics/ @themanual4am

2023 - 11 - 13

a mathematical paradigmatic mashup: Thomas Kuhn Vs map-territory Vs ...?

prefer the simplest explanation 1

consider all mathematics as pseudo-mathematics; a means for a novice mathematician to express ideas in less time and fewer words than a similarly novice writer might, in prose. all terms are tentative. corrections $\wedge \lor$ advice, welcome.

. . .

¹which works

1 maps

 $(M)^2$

1.1 set-of-all

 $\left(\begin{array}{c} \cup \\ Me \end{array} \right)$

For a paradigm Pa, the set-of-all measures \bigcup_{Me} , is a union \cup , of respective principals Pr:

$$\bigcup_{Me} = \{Pa | Pr_1 \cup Pr_2 \dots\}$$
$$\bigcup_{Me} = \bigcup Pa: \{Pa | \bigcup_{M \in Pr} Me\}$$

1.2 set-of-common

 $\left(\begin{array}{c} \cap \\ Me \end{array} \right)$

For a paradigm Pa, the set-of-common-measures \bigcap_{Me} , is an intersect \cap , of respective principals Pr:

$$\bigcap_{Me}^{\cap} = \{ Pa | Pr_1 \cap Pr_2 \dots \}$$
$$\bigcap_{Me}^{\cap} = \bigcap Pa : \{ Pa | \bigcap_{M \in Pr}^{\cap} Me \}$$

1.3 symmetric difference

 $\left(\begin{array}{c} \cap^{\bigtriangleup} \\ Me \end{array} \right)$

The symmetric difference \bigcap_{Me}^{\frown} , is the set-of-all measures \bigcup_{Me} , minus the set-of-common measures \bigcap_{Me} :

$${}^{\cup}_{Me} - {}^{\cap}_{Me} = {}^{\cap^{\bigtriangleup}}_{Me}$$

1.4 general special

 $\left(\begin{array}{c} Gc \\ Me \end{array}, \begin{array}{c} Sc \\ Me \end{array} \right)$

territory aligns by the general case; maps ought to

For a paradigm Pa, the set-of-common measures \bigcap_{Me} , represents the general case G^c :

$${}^{\cap}_{Me} \equiv {}^{Gc}_{Me}$$

For a paradigm Pa, the symmetric difference \bigcap_{Me}^{\frown} represents the special case Sc:

$${}_{Me}^{\cap^{\bigtriangleup}} = {}_{Me}^{Sc}$$

²all references to paradigm Pa, also apply to an arbitrary set of principals Pr

1.5 common, common

 $\left(\begin{array}{c} \cap \cap \\ Me \end{array} \right)$

Initially, we considered each paradigm Pa, a set of measures Me, with common measures the result of intersect \cap :

$${}^{\cap_{1,2}}_{Me} = Pa_1 \cap Pa_2 = \{Me_2, Me_3\}$$

Subsequently, we redefined a paradigm Pa, as sets of paradigmatic principals Pr, each a set of measures Me, and observe that each paradigm might be considered either by set-of-all measures \bigcup_{Me} , or by set-of-common measures \bigcap_{Me} .

As follows, the common measures between paradigms $Pa_{1,2}$, ought now qualify combination, as necessary:

$$\bigcap_{Me}^{\cap\cap} = \bigcap Pa_1 \cap \bigcap Pa_2$$
$$\bigcup_{Me}^{\cup\cap} = \bigcup Pa_1 \cap \bigcup Pa_2 , \ \bigcap_{Me}^{\cup\cup} = \bigcap Pa_1 \cup \bigcap Pa_2 , \ \bigcup_{Me}^{\cup\cup} = \bigcup Pa_1 \cup \bigcup Pa_2$$
or as intersecting general case:
$$\bigcap_{Me}^{\cap Gc} = \{Pa_1|_{Me}^{Gc}\} \cap \{Pa_2|_{Me}^{Gc}\}$$

1.6 complexity

 $\big(\left|_{Me}^{\cap}\right| < \left|_{Me}^{\cup}\right| \,\big)$

The paradigmatic set-of-common measures ${}^{\cap}_{Me}$, is a subset \subseteq of the paradigmatic set-of-all measures ${}^{\cup}_{Me}$:

 $\stackrel{\cap}{Me} \subseteq \stackrel{\cup}{Me}$

The paradigmatic set-of-common measures \bigcap_{Me} , is simpler than the paradigmatic set-of-all measures \bigcup_{Me} :

$$|^{\cap}_{Me}| < |^{\cup}_{Me}|$$

The set of common, common measures $\bigcap_{Me}^{\cap\cap}$, between any two paradigms Pa, is simpler still:

$$Pa_1 \rightarrow \stackrel{\cap_1}{Me}, \ Pa_2 \rightarrow \stackrel{\cap_2}{Me} : |\stackrel{\cap\cap}{Me}| < |\stackrel{\cap_1}{Me}| \land |\stackrel{\cap\cap}{Me}| < |\stackrel{\cap}{Me}|$$

note: ignoring further treatment for time being ³

1.7 reconciliation

(the set theory principle of inclusion and exclusion)

"the universe does not double count"-conservation laws

The set theory principle of inclusion and exclusion states:

$$|X \cup Y| = |X| + |Y| - |X \cap Y|$$

"for an accurate account, the sum of set cardinals must be subtracted by the cardinal of the common set"

"paradigms which do not reconcile by the general case, double count"

$$X \cap Y \equiv {}^{\cap \cap}_{Me} \equiv {}^{\cap Ge}_{Me}$$

³diversity; etc