the improbable yet elementary case

@causalmechanics/ @themanual4am

2023 - 11 - 13

a mathematical paradigmatic mashup: Thomas Kuhn Vs map-territory Vs ...?

prefer the simplest explanation 1

consider all mathematics as pseudo-mathematics; a means for a novice mathematician to express ideas in less time and fewer words than a similarly novice writer might, in prose. all terms are tentative. corrections $\wedge \lor$ advice, welcome.

. . .

¹which works

1 paradigm, measure, common measures, incommensurability

 $(\operatorname{Pa},\operatorname{Me},\operatorname{\stackrel{\cap}{}_{Me}},\operatorname{\stackrel{\cap}{}_{Me}}^{})$

1.1 a gentle introduction

(Pa, Me)

Let us consider a paradigm Pa, as a set of two measures Me_1 and Me_2 :

$$Pa = \{Me_1, Me_2\} : |Pa| = 2$$

1.2 totality, commonality

 (\cup, \cap)

If paradigm Pa_1 , contains measures $Me_{1,2,3}$, and paradigm Pa_2 , contains measures $Me_{2,3,4}$:

$$Pa_1 = \{Me_1, Me_2, Me_3\}$$

 $Pa_2 = \{Me_2, Me_3, Me_4\}$

The set-of-all measures \bigcup_{Me} , across Pa_1 and Pa_2 , can be found by union \cup :

$$\bigcup_{Me} = Pa_1 \cup Pa_2 = \{Me_1, Me_2, Me_3, Me_4\}$$

The set-of-common measures \bigcap_{Me} , between Pa_1 and Pa_2 , can be found by intersection \cap :

$$\bigcap_{Me} = Pa_1 \cap Pa_2 = \{Me_2, Me_3\}$$

Observing:

$$|_{Me}^{\cup}| = 4 \;, \; |_{Me}^{\cap}| = 2 \;, \; |_{Me}^{\cap}| < |_{Me}^{\cup}|$$

note: remember, this is a simplification, and an introduction

1.3 incommensurability

 $(\cap \emptyset)^{-2}$

Consider paradigms Pa_3 and Pa_4 , whereby:

$$Pa_3 = \{Me_1, Me_2, Me_3\}$$

$$Pa_4 = \{Me_4, Me_5, Me_6\}$$

When paradigms Pa_3 and Pa_4 , do not share common measures, then \bigcap_{Me} , is an empty set \emptyset :

$$\bigcap_{Me} = Pa_3 \cap Pa_4 = \varnothing : |\varnothing| = 0$$

And paradigms Pa_3 and Pa_4 , can be said to be incommensurable $\frac{\cap \emptyset}{Me}$:

$${\mathop{\cap}\limits_{Me}}=Pa_{3}\cap Pa_{4}=\varnothing:{\mathop{\cap}\limits_{Me}}\rightarrow{\mathop{\cap}\limits_{Me}}^{\cap\varnothing},\ |{\mathop{\cap}\limits_{Me}}^{\ominus\varnothing}|=0$$

²famously, two paradigms which share no common measures are incommensurable.